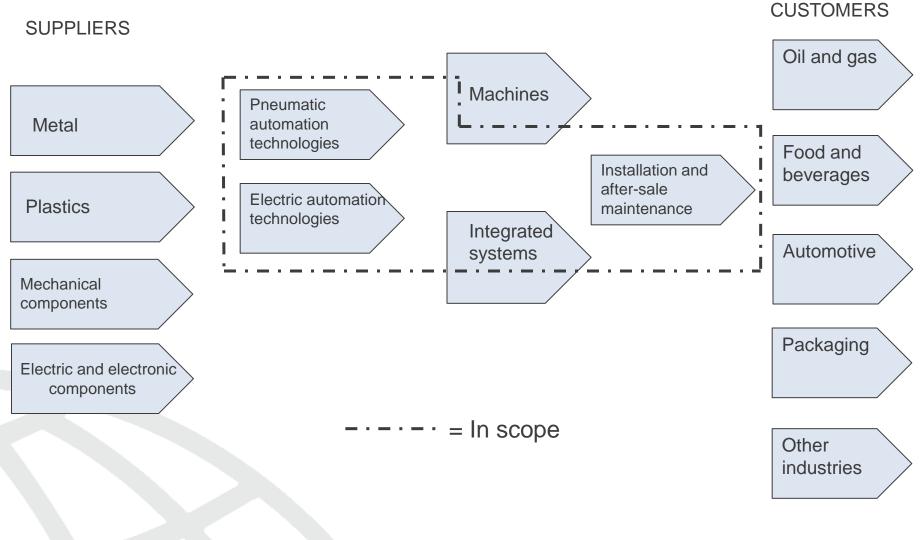
Overview of case studies: Brazil

Case Study: FESTO (March 2011)

Content

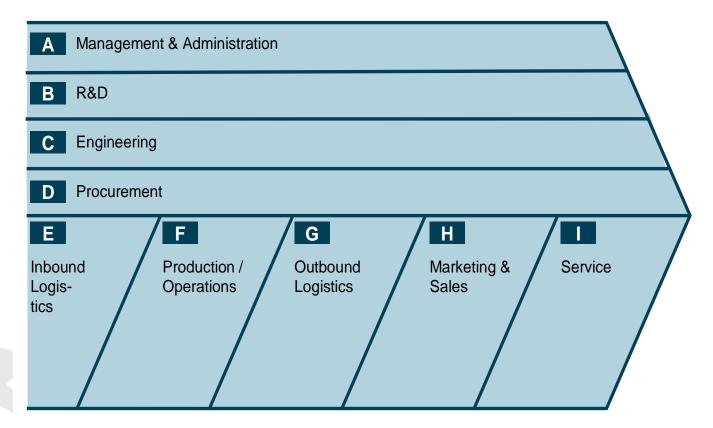
- Examples of application of the ISO methodology
 - Industrial automation equipment company
- Credits
 - ABNT Project team: Mr. Eduardo Campos de Sao Thiago (Project coordinator), Mrs. Thalita Romano and Ms. Lilian Secron
 - Dr. Maria Fatima Ludovico de Almeida, Professor, Pontifical University of Rio de Janeiro (PUC-Rio), and Ms. Audrya Almeida, M.Sc student at the Metrology, Quality and Innovation Program – PUC-Rio
 - Mr. Daniele Gerundino, Strategic Adviser to the ISO Secretary-General

The company – FESTO


 Leading provider of pneumatic and electric drive technology for factory and process automation

The company serves a large variety of customers from different industries – with approximately 30,000 catalogue products, customised solutions, ready-to-install automation systems and a matching range of services from stand alone products to beforeand after-sales support

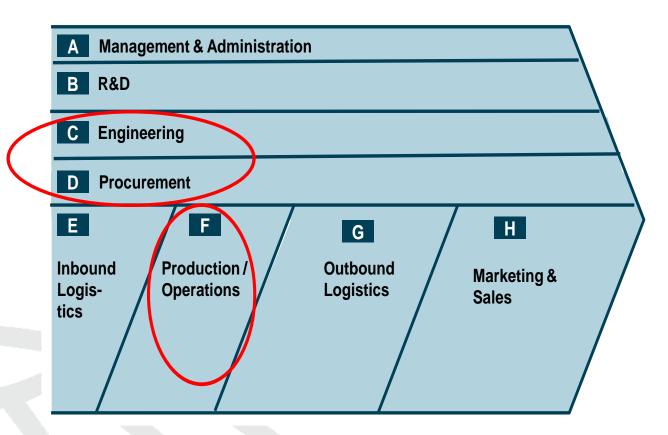
 The study has been conducted on the company Brazilian subsidiary which operates in South America (and, for some categories of products, serves the world market)



Industry value chain

Model of a company value chain (M. Porter)

A company value chain & the business functions « A » to « I » that constitute the Value Chain


Case study: FESTO

Preliminary analysis of the Standards Impact

- The company has a library of approximately 150 technical standards, primarily product and test standards. More than 80% of them are external standards (ISO, EN, DIN, ASTM, etc.). ISO 9001, 14001 and TS 16949 are also thouroghly applied
- Based on preliminary analysis (supported by the Standards Impact map) the business functions most significantly impacted by standards are:
 - Procurement
 - Production
 - Engineering

Company value chain and selected business function for an assessment of the impacts of standards (highlighted)

= Focus of the analysis

Procurement (1)

- Total cost of procurement (materials and parts): 90 million BRL
- Metals: 30% of total
 - Alluminium alloys (for Injection molding)
 - Steel Bars (stainless steel bars for machining)
 - Aluminium bars (stainless aluminium bars for machining)
- Mechanical parts for the machining process: 50% of total
- Plastics and other items: 20% of total
- Several standards (primarily ISO, EN and DIN) are used as a basis for material and parts specifications – primarily metals

Procurement (2)

- Standards impact 1: Work savings
- The amount of work needed to complete the purchasing process for non-standards based metals is estimated to be 5 times more as opposed to standards based metals
- Orders for standards-based metals represent about 25% of the total for metals (i.e. 25% of 30% in total – i.e. 7.5% of total orders)
- Personnel cost for the purchasing department is 40% of 13 million BRL, i.e. 5.22 million BRL
- Savings due to the use of standards in processing orders can therefore be estimated as: 80% of 7.5% of 5.22 million – i.e. some 312.912 BRL per year

Procurement (3)

- Standards impact 2: Purchase savings
- Standards-based goods, in the average, cost 30% less than non-standard-based ones
- Orders for standards-based metals represent about 25% of the total for metals (i.e. 25% of 30% in total i.e. 7.5% of total orders)
- Savings due to the use of standards-based metals can therefore be estimated as: 30% of 7.5% of 143 Million – i.e. some 3.219.750 BRL per year, or 2.25% of the procurement costs

Engineering (1)

- Work of the engineering function is extensively based on standards
- The interviews were focused on assessing the impact of standards introduced recently by the company
- It was possible to evaluate the impact Standards for geometrical and positional tolerances (such as ISO 5458:1998 and other standards from ISO TC 213), which, in the past two years, replaced standards for dimensional tolerances

Engineering (2)

- Benefits due to the implementation of these standards:
 - Savings of design time for the engineers
 - Reduction of projects' elapsed time and related work
 - Reduction of time-to-market
 - Improved communication between engineering and manufacturing (helping more rapid machine set-up and to reduce machine time for products)
 - Increased reliability of manufacturing

Engineering (3)

- Standards impact 1: Work savings (design time)
- The savings in design time due to the introduction of these standards affect about 1/3 (33%) of engineers.
- Estimate savings of design time: 10%
- Personnel cost for the engineering department is 50% of 7.16 million BRL, i.e. 3.58 million BRL.
- Savings due to the use of standards for geometrical and positional tolerances can therefore be estimated as: 10% of 33% of 3.58 Million i.e. some 118.058 BRL per year, or 1.6% of the costs of the engineering function

Engineering (4)

- Standards impact 2: Savings due to projects' time reduction
- The total amount of engineering hours per month required from product design to production set-up has been estimated in 2.670 hrs
- Estimate of total reduction of time: 5%
- Hourly cost of concerned personnel: 127 BRL
- Total cost of personnel involved: 338.670 BRL per month i.e. 4.07 million BRL per year
- Savings due to the use of standards for geometrical and positional tolerances can therefore be estimated as: 5%
 4.07 million – i.e. some 203.202 BRL per year

Production (1)

- The company is strongly committed to continual improvement
- QMS (ISO 9001) was introduced in 1994 but a major redesign took place from 2006, when the company entered in the global manufacturing programme of the group and the "Made by Festo" project was launched
- The local subsidiary participated in the "Made by Festo" corporate programme and certification schema
- The major impact was on the production business function

Production (2)

- Impact of the "made by Company" programme: development and implementation of new procedures, including more stringent KPIs (Key Performance Indicators) and higher controls
- The new procedures were accompanied by the establishment of self-managed production teams – each of them has to take objectives in relation to 6 indicators: Quality, Productivity, Cost, Organization, Sefety/Environmental improvements, Employees development

Case study: FESTO

Production (3)

- Examples of specific improvements achieved in the past two years:
 - the production of "circle lips" has been re-engineered to use standardized components. The same operation, with the new machining process, can be done in 50% of the time
 - the production cycle of "caps" has been optimize and the efficiency gain has allowed to eliminate one night shift.

Case study: FESTO

Production (4)

- Standards impact: Production efficiency gains
- The mix of measures introduced through the standardsdriven continual improvement process has allowed to achieve 1.59 million BRL savings in production costs (about 13% of total production costs of last year)
- The use of standards was estimated to contribute for about 1/3 to the above improvement (i.e. 524.700 BRL)

Standards EBIT impact of the selected business functions

Business functions	EBIT impact
Procurement	3.532.662 BRL
Engineering	321.260 BRL
Production	524.700 BRL
Total	4.378.662 BRL

 This corresponds to 1.90% of the company turnover (total: 239 million BRL)

Thank you for your attention!

http://www.iso.org

